
5. Advanced Data Structures

Pukar Karki
Assistant Professor

2

Fibonacci Heaps

✔ The Fibonacci heap data structure serves a dual purpose.

• First, it supports a set of operations that constitutes what is known as a
“mergeable heap.”

• Second, several Fibonacci-heap operations run in constant amortized
time, which makes this data structure well suited for applications that
invoke these operations frequently.

3

Fibonacci Heaps
Mergeable Heaps

✔ A mergeable heap is any data structure that supports the following
five operations, in which each element has a key:

MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H, x) inserts element x, whose key has already been filled in, into
heap H.

MINIMUM(H) returns a pointer to the element in heap H whose key is
minimum.

EXTRACT-MIN(H) deletes the element from heap H whose key is
minimum, re-turning a pointer to the element.

UNION(H1, H2) creates and returns a new heap that contains all the
elements of heaps H1 and H2. Heaps H1 and H2 are “destroyed” by this
operation.

4

Fibonacci Heaps
✔ In addition to the mergeable-heap operations above, Fibonacci heaps

also support the following two operations:

DECREASE-KEY(H, x, k) assigns to element x within heap H the
new key value k, which we assume to be no greater than its current
key value

DELETE(H, x) deletes element x from heap H.

5

Fibonacci Heaps

6

Fibonacci Heaps
Fibonacci Heaps in Theory and Practice

✔ From a theoretical standpoint, Fibonacci heaps are especially desirable
when the number of EXTRACT-MIN and DELETE operations is small
relative to the number of other operations performed.

✔ This situation arises in many applications.

✔ For example, some algorithms for graph problems may call DECREASE-
KEY once per edge.

✔ For dense graphs, which have many edges, the Θ(1) amortized time of each
call of DECREASE-KEY adds up to a big improvement over the Θ(lg n)
worst-case time of binary heaps.

7

Fibonacci Heaps
Fibonacci Heaps in Theory and Practice

✔ From a practical point of view, however, the constant factors and
programming complexity of Fibonacci heaps make them less desirable than
ordinary binary (or k-ary) heaps for most applications, except for certain
applications that manage large amounts of data.

✔ Thus, Fibonacci heaps are predominantly of theoretical interest.

✔ If a much simpler data structure with the same amortized time bounds as
Fibonacci heaps were developed, it would be of practical use as well.

8

Fibonacci Heaps
Fibonacci Heaps in Theory and Practice

✔ Both binary heaps and Fibonacci heaps are inefficient in how they support
the operation SEARCH; it can take a while to find an element with a given
key.

✔ For this reason, operations such as DECREASE-KEY and DELETE that
refer to a given element require a pointer to that element as part of their
input.

9

Fibonacci Heaps - Structure
✔ A Fibonacci heap is a collection of rooted trees that are min-heap ordered.

✔ That is, each tree obeys the min-heap property:

the key of a node is greater than or equal to the key of its parent.

(a) A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The dashed
line indicates the root list. The minimum node of the heap is the node containing the key 3.
Black nodes are marked.

10

Fibonacci Heaps - Structure

b) A more complete representation showing pointers p (up arrows), child (down
arrows), and left and right (sideways arrows).

● Each node x contains a pointer x.p to its parent and a pointer x.child to any one of its
children.

● The children of x are linked together in a circular, doubly linked list, which we call the child
list of x.

● Each child y in a child list has pointers y.left and y.right that point to y’s left and right
siblings, respectively.

● If node y is an only child, then y.left = y.right = y.
● Siblings may appear in a child list in any order.

11

Fibonacci Heaps - Structure

✔ Circular, doubly linked lists have two advantages for use in Fibonacci heaps.

✔ First, we can insert a node into any location or remove a node from
anywhere in a circular, doubly linked list in O(1) time.

✔ Second, given two such lists, we can concatenate them (or “splice” them
together) into one circular, doubly linked list in O(1) time.

12

Fibonacci Heaps - Structure

✔ Each node has two other attributes.

✔ We store the number of children in the child list of node x in x.degree.

✔ The boolean-valued attribute x.mark indicates whether node x has
lost a child since the last time x was made the child of another node.

13

Fibonacci Heaps - Structure

✔ Newly created nodes are unmarked, and a node x becomes
unmarked whenever it is made the child of another node.

✔ Until we look at the DECREASE-KEY operation , we will just set all
mark attributes to FALSE.

14

Fibonacci Heaps - Structure

✔ We access a given Fibonacci heap H by a pointer H.min to the root of
a tree containing the minimum key; we call this node the minimum
node of the Fibonacci heap.

✔ If more than one root has a key with the minimum value, then any
such root may serve as the minimum node.

✔ When a Fibonacci heap H is empty, H.min is NIL.

15

Fibonacci Heaps - Structure

✔ The roots of all the trees in a Fibonacci heap are linked together
using their left and right pointers into a circular, doubly linked list
called the root list of the Fibonacci heap.

✔ The pointer H.min thus points to the node in the root list whose key is
minimum.

✔ Trees may appear in any order within a root list.

✔ We rely on one other attribute for a Fibonacci heap H: H.n, the
number of nodes currently in H.

16

Fibonacci Heaps - Structure

✔ We shall use the potential method to analyze the performance of
Fibonacci heap operations.

✔ For a given Fibonacci heap H, we indicate by t(H) the number of trees
in the root list of H and by m(H) the number of marked nodes in H.

✔ We then define the potential ϕ(H) of Fibonacci heap H by

ϕ(H) = t(H) + 2 m(H)

17

Mergeable-Heap operations
Creating a new Fibonacci heap

✔ To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure
allocates and returns the Fibonacci heap object H, where H.n = 0 and
H.min = NIL; there are no trees in H.

✔ Because t(H) = 0 and m(H) = 0, the potential of the empty Fibonacci
heap is ϕ(H) = 0.

✔ The amortized cost of MAKE-FIB-HEAP is thus equal to its O(1)
actual cost.

18

Mergeable-Heap operations
Inserting a node

✔ The following procedure inserts node x into Fibonacci heap H, assuming that
the node has already been allocated and that x.key has already been filled
in.

19

Mergeable-Heap operations
Inserting a node

(a) A Fibonacci heap H.

20

Mergeable-Heap operations
Inserting a node.

(b) Fibonacci heap H after inserting the node with key 21. The node becomes its own min-
heap-ordered tree and is then added to the root list, becoming the left sibling of the root.

21

Mergeable-Heap operations
Inserting a node

✔ Lines 1–4 initialize some of the
structural attributes of node x.

✔ Line 5 tests to see whether
Fibonacci heap H is empty.

✔ If it is, then lines 6–7 make x be
the only node in H’s root list and
set H.min to point to x.

✔ Otherwise, lines 8–10 insert x
into H’s root list and update
H.min if necessary.

✔ Finally, line 11 increments H.n to
reflect the addition of the new
node.

22

Mergeable-Heap operations
Inserting a node ✔ To determine the amortized cost of

FIB-HEAP-INSERT, let H be the
input Fibonacci heap and H’ be
the resulting Fibonacci heap.

✔ Then,
t(H’) = t(H) + 1 and
m(H’) = m(H),

✔ and the increase in potential is
(t(H) + 1) + 2 m(H)) -
(t(H) + 2 m(H))
= 1

✔ Since the actual cost is O(1), the
amortized cost is O(1) + 1
= O(1).

23

Mergeable-Heap operations
Finding the minimum node

✔ The minimum node of a Fibonacci heap H is given by the
pointer H.min, so we can find the minimum node in O(1) actual
time.

✔ Because the potential of H does not change, the amortized cost
of this operation is equal to its O(1) actual cost.

24

Mergeable-Heap operations
Uniting two Fibonacci heaps

✔ The following procedure unites Fibonacci heaps H1 and H2, destroying
H1 and H2 in the process.

✔ It simply concatenates the root lists of H1 and H2 and then determines
the new minimum node.

✔ Afterward, the objects representing H1 and H2 will never be used
again.

25

Mergeable-Heap operations
Uniting two Fibonacci heaps

26

Mergeable-Heap operations
Uniting two Fibonacci heaps

✔ Lines 1–3 concatenate the root lists of H1 and H2 into a new root list H.
✔ Lines 2, 4, and 5 set the minimum node of H, and line 6 sets H:n to the

total number of nodes.
✔ Line 7 returns the resulting Fibonacci heap H.

27

Mergeable-Heap operations
Uniting two Fibonacci heaps

✔ As in the FIB-HEAP- INSERT procedure, all roots remain roots.
✔ The change in potential is

28

Mergeable-Heap operations
Extracting the Minimum Node

29

Mergeable-Heap operations
Extracting the Minimum Node

30

Mergeable-Heap operations
Extracting the Minimum Node

31

Mergeable-Heap operations
Extracting the Minimum Node

(a) A Fibonacci heap H

32

Mergeable-Heap operations
Extracting the Minimum Node

(b) The situation after removing the minimum node z from the root list and
adding its children to the root list

33

Mergeable-Heap operations
Extracting the Minimum Node

(c)The array A and the trees after the first iteration of the for loop of lines 4–14 of
the procedure CONSOLIDATE.

The procedure processes the root list by starting at the node pointed to by H.min and following
right pointers. Each part shows the values of w and x at the end of an iteration.

34

Mergeable-Heap operations
Extracting the Minimum Node

(d)The array A and the trees after the second iteration of the for loop of lines 4–14
of the procedure CONSOLIDATE.

35

Mergeable-Heap operations
Extracting the Minimum Node

(e)The array A and the trees after the third iteration of the for loop of lines 4–14 of
the procedure CONSOLIDATE.

36

Mergeable-Heap operations
Extracting the Minimum Node

(f)The next iteration of the for loop, with the values of w and x shown at
the end of each iteration of the while loop of lines 7–13.

37

Mergeable-Heap operations
Extracting the Minimum Node

(g)The next iteration of the for loop, with the values of w and x shown at the end
of each iteration of the while loop of lines 7–13.

38

Mergeable-Heap operations
Extracting the Minimum Node

(h)The next iteration of the for loop, with the values of w and x shown at the end of
each iteration of the while loop of lines 7–13.

39

Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.

40

Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.

41

Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.

42

Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.

43

Mergeable-Heap operations
Extracting the Minimum Node

(m) Fibonacci heap H after reconstructing the root list from the array A and
determining the new H.min pointer.

44

Mergeable-Heap operations
Decreasing a Key

45

Mergeable-Heap operations
Decreasing a Key

46

Mergeable-Heap operations
Decreasing a Key

(a) The initial Fibonacci heap.

47

Mergeable-Heap operations
Decreasing a Key

(b) The node with key 46 has its key
decreased to 15.
The node becomes a root, and its
parent (with key 24), which had
previously been unmarked,
becomes marked.

48

Mergeable-Heap operations
Decreasing a Key

● (c)–(e) The node with key 35 has its key
decreased to 5. In part (c), the node, now with
key 5, becomes a root. Its parent, with key 26,
is marked, so a cascading cut occurs.

● The node with key 26 is cut from its parent
and made an unmarked root in (d).

● Another cascading cut occurs, since the
node with key 24 is marked as well. This
node is cut from its parent and made an
unmarked root in part (e).

● The cascading cuts stop at this point, since the node with key 7 is a root. (Even if this node were
not a root, the cascading cuts would stop, since it is unmarked.)

● Part (e) shows the result of the FIB-HEAP-DECREASE-KEY operation, with H:min pointing to the
new minimum node.

49

Mergeable-Heap operations
Deleting a Node

50

Quake Heaps
The approach: We will work with a collection of tournament trees, where
each element in S is stored in exactly one leaf, and the element of each
internal node is defined as the minimum of the elements at the children.

✔ We require that at each node x, all paths from x to a leaf have the
same length; this length is referred to as the height of x.

✔ We also require that each internal node has degree 2 or 1.

51

Quake Heaps
✔ Two basic operations are easy to do in constant time under these

requirements:

- First, given two trees of the same height, we can link them into
one, simply by creating a new root pointing to the two roots,
storing the smaller element among the two roots.

52

Quake Heaps
✔ Two basic operations are easy to do in constant time under these

requirements:

- Secondly, given a node x whose element is different from x’s
parent’s, we can cut out the subtree rooted at x.

- Note that x’s former parent’s degree is reduced to 1, but our
setup explicitly allows for degree-1 nodes.

53

Quake Heaps
✔ (To be concrete, we can set α = 3/4, for example.) The invariant

clearly implies that the maximum height is at most log1/α n.

✔ When the invariant is violated for some i, a “seismic” event occurs
and we remove everything from height i + 1 an up, to allow rebuilding
later.

✔ Since ni+1 = ni+2 = · · · = 0 now, the invariant is restored. Intuitively,
events of large “magnitude” (i.e., events at low heights I) should occur
infrequently.

54

Quake Heaps

55

Quake Heaps
Analysis

● In the current data structure, let N be the number of nodes, T be the number
of trees, and B be the number of degree-1 nodes (the “bad” nodes).

● Define the potential to be

● The amortized cost of an operation is the actual cost plus the change in
potential.

56

Quake Heaps
Analysis

● For insert(), the actual cost is O(1), and N and T increase by 1.

● So, the amortized cost is O(1).

● For decrease-key(), the actual cost is O(1), and T and B increase by 1.

● So, the amortized cost is O(1).

57

Quake Heaps
Analysis

58

van Emde Boas Trees

● van Emde Boas trees support the priority-queue operations, and a
few others, each in O(lg lg n) worst-case time.

● The hitch is that the keys must be integers in the range 0 to n - 1, with
no duplicates allowed.

59

van Emde Boas Trees

● Specifically, van Emde Boas trees support each of the dynamic set
operations such as SEARCH, INSERT, DELETE, MINIMUM,
MAXIMUM, SUCCESSOR, and PREDECESSOR—in O(lg lg n) time.

60

van Emde Boas Trees

● We will use n to denote the number of elements currently in the set
and u as the range of possible values.

● So each van Emde Boas tree operation runs in O(lg lg u) time.

● We call the set {0, 1, 2, u – 1) the universe of values that can be
stored and u the universe size.

● We assume throughout this chapter that u is an exact power of 2, i.e.,
u = 2k for some integer k ≥ 1.

61

van Emde Boas Trees

Preliminary Approaches – Direct Addressing

✔ Direct addressing provides the simplest approach to storing a dynamic set.

✔ Since we are concerned only with storing keys, we can simplify the direct-
addressing approach to store the dynamic set as a bit vector.

✔ To store a dynamic set of values from the universe {0, 1, 2, . . . u - 1}, we
maintain an array A[0 .. u - 1] of u bits.

✔ The entry A[x] holds a 1 if the value x is in the dynamic set, and it holds a 0
otherwise.

62

van Emde Boas Trees

Preliminary Approaches – Direct Addressing

✔ Although we can perform each of the INSERT, DELETE, and
MEMBER operations in O(1) time with a bit vector, the remaining
operations—MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR—each take Θ(u) time in the worst case because we
might have to scan through Θ(u) elements.

63

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

✔ We can short-cut long scans in the bit vector by superimposing a
binary tree of bits on top of it.

✔ The entries of the bit vector form the leaves of the binary tree, and
each internal node contains a 1 if and only if any leaf in its subtree
contains a 1.

✔ In other words, the bit stored in an internal node is the logical-or of its
two children.

64

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● A binary tree of bits superimposed on top of a bit vector representing the set {2, 3, 4, 5, 7, 14,
15} when u = 16.

● Each internal node contains a 1 if and only if some leaf in its subtree contains a 1.
● The arrows show the path followed to determine the predecessor of 14 in the set.

65

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● The operations that took Θ(u) worst-case time with an unadorned bit vector
now use the tree structure:

- To find the minimum value in the set, start at the root and head down
toward the leaves, always taking the leftmost node containing a 1.

66

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● The operations that took Θ(u) worst-case time with an unadorned bit vector
now use the tree structure:

- To find the maximum value in the set, start at the root and head down
toward the leaves, always taking the rightmost node containing a 1.

67

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● To find the successor of x, start at the leaf indexed by x, and head up toward
the root until we enter a node from the left and this node has a 1 in its right
child z.

● Then head down through node z, always taking the leftmost node containing
a 1 (i.e., find the minimum value in the subtree rooted at the right child z).

68

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● Since the height of the tree is lg u and each of the above operations makes at
most one pass up the tree and at most one pass down, each operation takes
O(lg u) time in the worst case.

69

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

✔ What happens if we superimpose a tree with greater degree?

✔ Let us assume that the size of the universe is u = 22k for some
integer k, so that √u is an integer.

✔ Instead of superimposing a binary tree on top of the bit vector, we
superimpose a tree of degree √u.

70

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● As before, each internal node stores the logical-or of the bits
within its sub-tree, so that the √u internal nodes at depth 1
summarize each group of √u values.

71

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● We can think of these nodes as an array summary[0 . . √u - 1], where
summary[i] contains a 1 if and only if the subarray A[i√u .. (i+1) √u – 1]
contains a 1.

● We call this √u-bit subarray of A the ith cluster.

72

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● For a given value of x, the bit A[x] appears in cluster number
floor(x/√u).

● Now INSERT becomes an O(1) time operation: to insert x, set both
A[x] and summary[floor(x/√u)] to 1.

73

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● We can use the summary array to perform each of the operations
MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR, and DELETE
in O(√u) time.

74

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● To find the minimum (maximum) value, find the leftmost (rightmost)
entry in summary that contains a 1, say summary[i], and then do a
linear search within the ith cluster for the leftmost (rightmost) 1.

75

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● To find the successor (predecessor) of x, first search to the right (left)
within its cluster. If we find a 1, that position gives the result.

● Otherwise, let i = floor(x/√u) and search to the right (left) within the
summary array from index i. The first position that holds a 1 gives the
index of a cluster. Search within that cluster for the leftmost (rightmost)
1.

● That position holds the successor (predecessor).

76

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● To delete the value x, let i = floor(x/√u).

● Set A[x] to 0 and then set summary[i] to the logical-or of the bits in the
ith cluster.

77

van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● At first glance, it seems as though we have made negative progress.

● Superimposing a binary tree gave us O(lg u) time operations, which
are asymptotically faster than O(√u) time.

● Using a tree of degree √u will turn out to be a key idea of van Emde
Boas trees, however.

78

van Emde Boas Trees

Proto van Emde Boas structures

● For the universe {0, 1, 2, . . . u - 1}, we define a proto van
Emde Boas structure, or proto-vEB structure, which we denote
as proto-VEB(u), recursively as follows.

● Each proto-VEB(u) structure contains an attribute u giving its
universe size.

● In addition, it contains the following:

79

van Emde Boas Trees

Proto van Emde Boas structures

● If u = 2, then it is the base size, and it contains an array A[0 .. 1] of
two bits.

● Otherwise, u = 22^k for some integer k ≥ 1, so that u ≥ 4. In addition to
the universe size u, the data structure proto-VEB(u) contains the
following attributes

- a pointer named summary to a proto-VEB(√u) structure

- and an array cluster[0 . . √u - 1] of √u pointers, each to a proto-
VEB(√u) structure.

2¿

80

van Emde Boas Trees

Proto van Emde Boas structures

2¿

● The information in a proto-VEB(u) structure when u ≥ 4.
● The structure contains the universe size u, a pointer summary to a proto-

VEB(√u) structure, and an array cluster[0 . . √u – 1) of √u pointers to proto-
VEB(√u) structures.

81

van Emde Boas Trees

Proto van Emde Boas structures

2¿

● The element x, where 0 ≤ x < u, is recursively stored in the cluster numbered
high(x) as element low(x) within that cluster.

Where high(x) = floor(x/√u)
low(x) = x mod √u

82

van Emde Boas Trees

Proto van Emde Boas structures

2¿

83

van Emde Boas Trees

● The proto-vEB structure of the previous section is close to what
we need to achieve O(lg lg u) running times.

● It falls short because we have to recurse too many times in
most of the operations.

84

van Emde Boas Trees

● Now, we shall design a data structure that is similar to the
proto-vEB structure but stores a little more information, thereby
removing the need for some of the recursion.

● We also will allow the universe size u to be any exact power of
2 and when √u is not an integer that is, if u is an odd power of
2 (u = 22k + 1 for some integer k ≥ 0), then we will divide the lg u
bits of a number into the most significant ceil((lg u)/2) bits and
the least significant floor((lg u)/2) bits.

85

van Emde Boas Trees

● For convenience, we denote 2ceil((lg u)/2) (the “up- per square
root” of u) by .

● And, we denote 2floor((lg u)/2)(the “lower square root” of u) by

● So that,

● When u is an even power of 2 (u = 22k for some integer k),

86

van Emde Boas Trees

● Because we now allow u to be an odd power of 2, we must
redefine our helpful functions

87

van Emde Boas Trees

vEB tree contains two attributes not found in a proto-vEB structure:

● min stores the minimum element in the vEB tree, and

● max stores the maximum element in the vEB tree.

88

van Emde Boas Trees
● Furthermore, the element stored in min does not appear in any of

the recursive trees that the cluster array points to.

● The elements stored in a vEB(u) tree V , therefore, are V.min plus
all the elements recursively stored in the trees pointed
to by

89

van Emde Boas Trees

● Note that when a vEB tree contains two or more elements, we treat
min and max differently: the element stored in min does not appear in
any of the clusters, but the element stored in max does.

● Since the base size is 2, a vEB(2) tree does not need the array A that
the corresponding proto-vEB(2) structure has.

● Instead, we can determine its elements from its min and max
attributes.

● In a vEB tree with no elements, regardless of its universe size u, both
min and max are NIL.

90

van Emde Boas Trees

91

van Emde Boas Trees
✔ Figure shows a vEB(16) tree V holding the set {2, 3, 4, 5, 7, 14, 15}.

✔ Because the smallest element is 2, V.min equals 2, and even though
high(2) = 0, the element 2 does not appear in the vEB(4) tree pointed
to by V.cluster[0]: notice that V.cluster[0].min equals 3, and so 2 is not
in this vEB tree.

✔ Similarly, since V.cluster[0].min equals 3, and 2 and 3 are the only
elements in V.cluster[0], the vEB(2) clusters within V.cluster[0] are
empty.

92

van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the
number of recursive calls within the operations on vEB trees.
These attributes will help us in four ways:

1. The MINIMUM and MAXIMUM operations do not even need to
recurse, for they can just return the values of min or max.

93

van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the
number of recursive calls within the operations on vEB trees.
These attributes will help us in four ways:

2. The SUCCESSOR operation can avoid making a recursive call
to determine whether the successor of a value x lies within high(x).
That is because x’ successor lies within its cluster if and only if x is
strictly less than the ma attribute of its cluster. A symmetric
argument holds for PREDECESSOR and min.

94

van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the
number of recursive calls within the operations on vEB trees.
These attributes will help us in four ways:

3. We can tell whether a vEB tree has no elements, exactly one
element, or at least two elements in constant time from its min and
max values. This ability will help in the INSERT and DELETE
operations. If min and max are both NIL, then the vEB tree has no
elements. If min and max are non-NIL but are equal to each other,
then the vEB tree has exactly one element. Otherwise, both min
and max are non-NIL but are unequal, and the vEB tree has two or
more elements.

95

van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the
number of recursive calls within the operations on vEB trees.
These attributes will help us in four ways:

4. If we know that a vEB tree is empty, we can insert an element
into it by updating only its min and max attributes. Hence, we can
insert into an empty vEB tree in constant time. Similarly, if we know
that a vEB tree has only one element, we can delete that element
in constant time by updating only min and max. These properties
will allow us to cut short the chain of recursive calls.

96

van Emde Boas Trees
Finding the minimum and maximum elements

• Because we store the minimum and maximum in the attributes min
and max, two of the operations are one-liners, taking constant time:

97

van Emde Boas Trees
Determining whether a value is in the set

● Line 1 checks to see
whether x equals either
the minimum or maximum
element.

● If it does, line 2 returns
TRUE. Otherwise, line 3
tests for the base case.

● Since a vEB(2) tree has
no elements other than
those in min and max, if it
is the base case, line 4
returns FALSE.

● The other possibility—it is not a base case and x equals neither min nor
max—is handled by the recursive call in line 5.

● This procedure takes O(lg lg u) time.

98

van Emde Boas Trees
Finding the Successor

99

van Emde Boas Trees
Finding the Predecessor

100

van Emde Boas Trees
Inserting an Element

101

van Emde Boas Trees
Deleting an element

102

Data Structures for Disjoints Sets

● A disjoint-set data structure maintains a collection S = {S1, S2, … ,Sk} of
disjoint dynamic sets.

● We identify each set by a representative, which is some member of the set.

● In some applications, it doesn’t matter which member is used as the
representative; we care only that if we ask for the representative of a
dynamic set twice without modifying the set between the requests, we get
the same answer both times.

● Other applications may require a prespecified rule for choosing the
representative, such as choosing the smallest member in the set (assuming,
of course, that the elements can be ordered).

103

Data Structures for Disjoints Sets

● We wish to support the following operations:

1) MAKE-SET(x) creates a new set whose only member (and thus
representative) is x. Since the sets are disjoint, we require that x not already
be in some other set.

2) UNION(x, y) unites the dynamic sets that contain x and y, say Sx and Sy,
into a new set that is the union of these two sets. We assume that the two
sets are disjoint prior to the operation. The representative of the resulting set
is any member of Sx S∪ y, although many implementations of UNION
specifically choose the representative of either Sx or Sy as the new
representative. Since we require the sets in the collection to be disjoint,
conceptually we destroy sets Sx and Sy,removing them from the collection S.
In practice, we often absorb the elements of one of the sets into the other
set.

3) FIND-SET(x) returns a pointer to the representative of the (unique) set
containing x.

104

Data Structures for Disjoints Sets

● We shall analyze the running times of disjoint-set data structures in terms of
two parameters: n, the number of MAKE-SET operations, and m, the total
number of MAKE-SET, UNION, and FIND-SET operations.

● Since the sets are disjoint, each UNION operation reduces the number of
sets by one.

● After n - 1 UNION operations, therefore, only one set remains.

● The number of UNION operations is thus at most n - 1.

● Note also that since the MAKE-SET operations are included in the total
number of operations m, we have m ≥ n.

● We assume that the n MAKE-SET operations are the first n operations
performed.

105

Data Structures for Disjoints Sets

Disjoint-set data structures can be used in determining the connected components of an
undirected graph

106

Data Structures for Disjoints Sets

107

Data Structures for Disjoints Sets

Linked-List Representation of Disjoint sets

● A simple way to implement a disjoint-set data structure is
representing each set by its own linked list.

● The object for each set has attributes head, pointing to the first object
in the list, and tail, pointing to the last object.

● Each object in the list contains a set member, a pointer to the next
object in the list, and a pointer back to the set object.

● Within each linked list, the objects may appear in any order. The
representative is the set member in the first object in the list.

108

Data Structures for Disjoints Sets

● Linked-list representations of two sets. Set S1 contains members d, f , and g, with representative
f , and set S2 contains members b, c, e, and h, with representative c.

● Each object in the list contains a set member, a pointer to the next object in the list, and a
pointer back to the set object.

● Each set object has pointers head and tail to the first and last objects, respectively.

109

Data Structures for Disjoints Sets

● The result of UNION(g, e), which appends the linked list containing e to the linked list
containing g.

● The representative of the resulting set is f . The set object for e’s list, S2, is destroyed.

110

Data Structures for Disjoints Sets

● With this linked-list representation, both MAKE-SET and FIND-SET
are easy, requiring O(1) time.

● To carry out MAKE-SET(x), we create a new linked list whose only
object is x.

● For FIND-SET(x), we just follow the pointer from x back to its set
object and then return the member in the object that head points to.

111

Data Structures for Disjoints Sets

● We perform UNION(x, y) by appending y’s list onto the end of x’s list.

● The representative of x’s list becomes the representative of the resulting set.

● We use the tail pointer for x’s list to quickly find where to append y’s list.

● Because all members of y’s list join x’s list, we can destroy the set object for
y’s list.

● Unfortunately, we must update the pointer to the set object for each object
originally on y’s list, which takes time linear in the length of y’s list.

112

Data Structures for Disjoints Sets

● In above figure, for example, the operation UNION(g, e) causes pointers to
be updated in the objects for b, c, e, and h.

113

Data Structures for Disjoints Sets
● In fact, we can easily construct a sequence of m operations on n objects that

requires Θ(n2) time.

● Suppose that we have objects x1, x2 xn.

● We execute the sequence of n MAKE-SET operations followed by n - 1 UNION
operations shown in Figure on next slide, so that m = 2n – 1.

● We spend Θ(n) time performing the n MAKE-SET operations.

● Because the ith UNION operation updates i objects, the total number of
objects updated by all n - 1 UNION operations is

● The total number of operations is 2n - 1, and so each operation on average
requires Θ(n) time. That is, the amortized time of an operation is Θ(n).

114

Data Structures for Disjoints Sets

A sequence of 2n - 1 operations on n objects that takes Θ(n2) time, or Θ(n)
time per operation on average, using the linked-list set representation and the

simple implementation of UNION.

115

Review Questions

1) Compare Fibonacci Heaps and Quake Heaps.

2) Explain the concept of van Emde Boas Trees.

3) How can disjoint sets be represented using linked lists? Explain.

4) Explain and analyze MAKE-SET, FIND-SET, and UNION operations
on disjoint sets using the linked-list representation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

