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Fibonacci Heaps

✔ The Fibonacci heap data structure serves a dual purpose.

• First, it supports a set of operations that constitutes what is known as a 
“mergeable heap.”

• Second, several Fibonacci-heap operations run in constant amortized 
time, which makes this data structure well suited for applications that 
invoke these operations frequently.
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Fibonacci Heaps
Mergeable Heaps

✔ A mergeable heap is any data structure that supports the following 
five operations, in which each element has a key:

MAKE-HEAP() creates and returns a new heap containing no elements.

INSERT(H, x) inserts element x, whose key has already been filled in, into 
heap H.

MINIMUM(H) returns a pointer to the element in heap H whose key is 
minimum.

EXTRACT-MIN(H) deletes the element from heap H whose key is 
minimum, re-turning a pointer to the element.

UNION(H1, H2) creates and returns a new heap that contains all the 
elements of heaps H1 and H2. Heaps H1 and H2 are “destroyed” by this 
operation.
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Fibonacci Heaps
✔ In addition to the mergeable-heap operations above, Fibonacci heaps 

also support the following two operations:

DECREASE-KEY(H, x, k) assigns to element x within heap H the 
new key value k, which we assume to be no greater than its current 
key value

DELETE(H, x) deletes element x from heap H.
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Fibonacci Heaps
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Fibonacci Heaps
Fibonacci Heaps in Theory and Practice

✔ From a theoretical standpoint, Fibonacci heaps are especially desirable 
when the number of EXTRACT-MIN and DELETE operations is small 
relative to the number of other operations performed.

✔ This situation arises in many applications. 

✔ For example, some algorithms for graph problems may call DECREASE-
KEY once per edge.

✔ For dense graphs, which have many edges, the Θ(1) amortized time of each 
call of DECREASE-KEY adds up to a big improvement over the Θ(lg n) 
worst-case time of binary heaps.



7

Fibonacci Heaps
Fibonacci Heaps in Theory and Practice

✔ From a practical point of view, however, the constant factors and 
programming complexity of Fibonacci heaps make them less desirable than 
ordinary binary (or k-ary) heaps for most applications, except for certain 
applications that manage large amounts of data.

✔ Thus, Fibonacci heaps are predominantly of theoretical interest.

✔ If a much simpler data structure with the same amortized time bounds as 
Fibonacci heaps were developed, it would be of practical use as well.
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Fibonacci Heaps
Fibonacci Heaps in Theory and Practice

✔ Both binary heaps and Fibonacci heaps are inefficient in how they support 
the operation SEARCH; it can take a while to find an element with a given 
key.

✔ For this reason, operations such as DECREASE-KEY and DELETE that 
refer to a given element require a pointer to that element as part of their 
input. 



9

Fibonacci Heaps - Structure
✔ A Fibonacci heap is a collection of rooted trees that are min-heap ordered.

✔ That is, each tree obeys the min-heap property:

the key of a node is greater than or equal to the key of its parent. 

(a) A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The dashed 
line indicates the root list. The minimum node of the heap is the node containing the key 3.
Black nodes are marked. 
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Fibonacci Heaps - Structure

b) A more complete representation showing pointers p (up arrows), child (down 
arrows), and left and right (sideways arrows). 

● Each node x contains a pointer x.p to its parent and a pointer x.child to any one of its 
children.

● The children of x are linked together in a circular, doubly linked list, which we call the child 
list of x.

● Each child y in a child list has pointers y.left and y.right that point to y’s left and right 
siblings, respectively. 

● If node y is an only child, then y.left = y.right = y.
● Siblings may appear in a child list in any order.
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Fibonacci Heaps - Structure

✔ Circular, doubly linked lists have two advantages for use in Fibonacci heaps.

✔ First, we can insert a node into any location or remove a node from 
anywhere in a circular, doubly linked list in O(1) time.

✔ Second, given two such lists, we can concatenate them (or “splice” them 
together) into one circular, doubly linked list in O(1) time.
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Fibonacci Heaps - Structure

✔ Each node has two other attributes.

✔ We store the number of children in the child list of node x in x.degree.

✔ The boolean-valued attribute x.mark indicates whether node x has 
lost a child since the last time x was made the child of another node.



13

Fibonacci Heaps - Structure

✔ Newly created nodes are unmarked, and a node x becomes 
unmarked whenever it is made the child of another node.

✔ Until we look at the DECREASE-KEY operation , we will just set all 
mark attributes to FALSE.
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Fibonacci Heaps - Structure

✔ We access a given Fibonacci heap H by a pointer H.min to the root of 
a tree containing the minimum key; we call this node the minimum 
node of the Fibonacci heap.

✔ If more than one root has a key with the minimum value, then any 
such root may serve as the minimum node.

✔ When a Fibonacci heap H is empty, H.min is NIL.
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Fibonacci Heaps - Structure

✔ The roots of all the trees in a Fibonacci heap are linked together 
using their left and right pointers into a circular, doubly linked list 
called the root list of the Fibonacci heap.

✔ The pointer H.min thus points to the node in the root list whose key is 
minimum.

✔ Trees may appear in any order within a root list.

✔ We rely on one other attribute for a Fibonacci heap H: H.n, the 
number of nodes currently in H.
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Fibonacci Heaps - Structure

✔ We shall use the potential method  to analyze the performance of 
Fibonacci heap operations.

✔ For a given Fibonacci heap H, we indicate by t(H) the number of trees 
in the root list of H and by m(H) the number of marked nodes in H.

✔ We then define the potential ϕ(H) of Fibonacci heap H by

ϕ(H) = t(H) + 2 m(H)
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Mergeable-Heap operations
Creating a new Fibonacci heap

✔ To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure 
allocates and returns the Fibonacci heap object H, where H.n = 0 and 
H.min = NIL; there are no trees in H.

✔ Because t(H) = 0 and m(H) = 0, the potential of the empty Fibonacci 
heap is ϕ(H) = 0.

✔ The amortized cost of MAKE-FIB-HEAP is thus equal to its O(1) 
actual cost.
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Mergeable-Heap operations
Inserting a node

✔ The following procedure inserts node x into Fibonacci heap H, assuming that 
the node has already been allocated and that x.key has already been filled 
in.
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Mergeable-Heap operations
Inserting a node

(a) A Fibonacci heap H.
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Mergeable-Heap operations
Inserting a node.

(b) Fibonacci heap H after inserting the node with key 21. The node becomes its own min-
heap-ordered tree and is then added to the root list, becoming the left sibling of the root.
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Mergeable-Heap operations
Inserting a node

✔ Lines 1–4 initialize some of the 
structural attributes of node x.

✔ Line 5 tests to see whether 
Fibonacci heap H is empty.

✔ If it is, then lines 6–7 make x be 
the only node in H’s root list and 
set H.min to point to x.

✔ Otherwise, lines 8–10 insert x 
into H’s root list and update 
H.min if necessary.

✔ Finally, line 11 increments H.n to 
reflect the addition of the new 
node.
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Mergeable-Heap operations
Inserting a node ✔ To determine the amortized cost of 

FIB-HEAP-INSERT, let H be the 
input Fibonacci heap and H’ be 
the resulting Fibonacci heap.

✔ Then,
t(H’) = t(H) + 1 and
m(H’)  = m(H), 

✔ and the increase in potential is 
(t(H) + 1) + 2 m(H)) - 
(t(H) + 2 m(H))
= 1

✔ Since the actual cost is O(1), the 
amortized cost is O(1) + 1 
= O(1).
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Mergeable-Heap operations
Finding the minimum node

✔ The minimum node of a Fibonacci heap H is given by the 
pointer H.min, so we can find the minimum node in O(1) actual 
time.

✔ Because the potential of H does not change, the amortized cost 
of this operation is equal to its O(1) actual cost.
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Mergeable-Heap operations
Uniting two Fibonacci heaps

✔ The following procedure unites Fibonacci heaps H1 and H2, destroying 
H1 and H2 in the process.

✔ It simply concatenates the root lists of H1 and H2 and then determines 
the new minimum node.

✔ Afterward, the objects representing H1 and H2 will never be used 
again.
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Mergeable-Heap operations
Uniting two Fibonacci heaps
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Mergeable-Heap operations
Uniting two Fibonacci heaps

✔ Lines 1–3 concatenate the root lists of H1 and H2 into a new root list H.
✔ Lines 2, 4, and 5 set the minimum node of H, and line 6 sets H:n to the 

total number of nodes.
✔ Line 7 returns the resulting Fibonacci heap H.
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Mergeable-Heap operations
Uniting two Fibonacci heaps

✔ As in the FIB-HEAP- INSERT procedure, all roots remain roots.
✔ The change in potential is
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Mergeable-Heap operations
Extracting the Minimum Node



29

Mergeable-Heap operations
Extracting the Minimum Node
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Mergeable-Heap operations
Extracting the Minimum Node
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Mergeable-Heap operations
Extracting the Minimum Node

(a) A Fibonacci heap H
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Mergeable-Heap operations
Extracting the Minimum Node

(b) The situation after removing the minimum node z from the root list and 
adding its children to the root list
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Mergeable-Heap operations
Extracting the Minimum Node

(c)The array A and the trees after the first  iteration of the for loop of lines 4–14 of
the procedure CONSOLIDATE.

The procedure processes the root list by starting at the node pointed to by H.min and following 
right pointers. Each part shows the values of w and x at the end of an iteration.
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Mergeable-Heap operations
Extracting the Minimum Node

(d)The array A and the trees after the second  iteration of the for loop of lines 4–14 
of the procedure CONSOLIDATE.
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Mergeable-Heap operations
Extracting the Minimum Node

(e)The array A and the trees after the third  iteration of the for loop of lines 4–14 of 
the procedure CONSOLIDATE.
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Mergeable-Heap operations
Extracting the Minimum Node

(f)The next iteration of the for loop, with the values of w and x shown at 
the end of each iteration of the while loop of lines 7–13.
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Mergeable-Heap operations
Extracting the Minimum Node

(g)The next iteration of the for loop, with the values of w and x shown at the end 
of each iteration of the while loop of lines 7–13.
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Mergeable-Heap operations
Extracting the Minimum Node

(h)The next iteration of the for loop, with the values of w and x shown at the end of 
each iteration of the while loop of lines 7–13.
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Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.
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Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.
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Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.
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Mergeable-Heap operations
Extracting the Minimum Node

(i to l)The situation after each of the next four iterations of the for loop.
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Mergeable-Heap operations
Extracting the Minimum Node

(m) Fibonacci heap H after reconstructing the root list from the array A and 
determining the new H.min pointer.
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Mergeable-Heap operations
Decreasing a Key
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Mergeable-Heap operations
Decreasing a Key
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Mergeable-Heap operations
Decreasing a Key

(a) The initial Fibonacci heap.
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Mergeable-Heap operations
Decreasing a Key

(b) The node with key 46 has its key 
decreased to 15.
The node becomes a root, and its 
parent (with key 24), which had 
previously been unmarked, 
becomes marked.
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Mergeable-Heap operations
Decreasing a Key

● (c)–(e) The node with key 35 has its key 
decreased to 5. In part (c), the node, now with 
key 5, becomes a root. Its parent, with key 26, 
is marked, so a cascading cut occurs.

● The node with key 26 is cut from its parent 
and made an unmarked root in (d).

● Another cascading cut occurs, since the 
node with key 24 is marked as well. This 
node is cut from its parent and made an 
unmarked root in part (e).

● The cascading cuts stop at this point, since the node with key 7 is a root. (Even if this node were 
not a root, the cascading cuts would stop, since it is unmarked.)

● Part (e) shows the result of the FIB-HEAP-DECREASE-KEY operation, with H:min pointing to the 
new minimum node.
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Mergeable-Heap operations
Deleting a Node
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Quake Heaps
The approach: We will work with a collection of tournament trees, where 
each element in S is stored in exactly one leaf, and the element of each 
internal node is defined as the minimum of the elements at the children.

✔ We require that at each node x, all paths from x to a leaf have the 
same length; this length is referred to as the height of x.

✔ We also require that each internal node has degree 2 or 1.
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Quake Heaps
✔ Two basic operations are easy to do in constant time under these 

requirements: 

- First, given two trees of the same height, we can link them into 
one, simply by creating a new root pointing to the two roots, 
storing the smaller element among the two roots.
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Quake Heaps
✔ Two basic operations are easy to do in constant time under these 

requirements: 

- Secondly, given a node x whose element is different from x’s 
parent’s, we can cut out the subtree rooted at x.

- Note that x’s former parent’s degree is reduced to 1, but our 
setup explicitly allows for degree-1 nodes.
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Quake Heaps
✔ (To be concrete, we can set α = 3/4, for example.) The invariant 

clearly implies that the maximum height is at most log1/α n.

✔ When the invariant is violated for some i, a “seismic” event occurs 
and we remove everything from height i + 1 an up, to allow rebuilding 
later.

✔ Since ni+1 = ni+2 = · · · = 0 now, the invariant is restored. Intuitively, 
events of large “magnitude” (i.e., events at low heights I) should occur 
infrequently.
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Quake Heaps
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Quake Heaps
Analysis

● In the current data structure, let N be the number of nodes, T be the number 
of trees, and B be the number of degree-1 nodes (the “bad” nodes).

● Define the potential to be

● The amortized cost of an operation is the actual cost plus the change in 
potential.
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Quake Heaps
Analysis

● For insert(), the actual cost is O(1), and N and T increase by 1.

● So, the amortized cost is O(1).

● For decrease-key(), the actual cost is O(1), and T and B increase by 1. 

● So, the amortized cost is O(1).
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Quake Heaps
Analysis
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van Emde Boas Trees

● van Emde Boas trees support the priority-queue operations, and a 
few others, each in O(lg lg n) worst-case time.

● The hitch is that the keys must be integers in the range 0 to n - 1, with 
no duplicates allowed.



59

van Emde Boas Trees

● Specifically, van Emde Boas trees support each of the dynamic set 
operations such as SEARCH, INSERT, DELETE, MINIMUM, 
MAXIMUM, SUCCESSOR, and PREDECESSOR—in O(lg lg n) time.
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van Emde Boas Trees

● We will use n to denote the number of elements currently in the set 
and u as the range of possible values.

● So each van Emde Boas tree operation runs in O(lg lg u) time.

● We call the set {0, 1, 2, . . . .  u – 1) the universe of values that can be 
stored and u the universe size.

● We assume throughout this chapter that u is an exact power of 2, i.e., 
u = 2k for some integer k ≥ 1.



61

van Emde Boas Trees

Preliminary Approaches – Direct Addressing

✔ Direct addressing provides the simplest approach to storing a dynamic set.

✔ Since we are concerned only with storing keys, we can simplify the direct-
addressing approach to store the dynamic set as a bit vector.

✔ To store a dynamic set of values from the universe {0, 1, 2, . . .  u - 1}, we 
maintain an array A[0 .. u - 1] of u bits.

✔ The entry A[x] holds a 1 if the value x is in the dynamic set, and it holds a 0 
otherwise.
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van Emde Boas Trees

Preliminary Approaches – Direct Addressing

✔ Although we can perform each of the INSERT, DELETE, and 
MEMBER operations in O(1) time with a bit vector, the remaining 
operations—MINIMUM, MAXIMUM, SUCCESSOR, and 
PREDECESSOR—each take Θ(u) time in the worst case because we 
might have to scan through Θ(u) elements.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

✔ We can short-cut long scans in the bit vector by superimposing a 
binary tree of bits on top of it. 

✔ The entries of the bit vector form the leaves of the binary tree, and 
each internal node contains a 1 if and only if any leaf in its subtree 
contains a 1.

✔ In other words, the bit stored in an internal node is the logical-or of its 
two children.



64

van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● A binary tree of bits superimposed on top of a bit vector representing the set {2, 3, 4, 5, 7, 14, 
15} when u = 16.

● Each internal node contains a 1 if and only if some leaf in its subtree contains a 1. 
● The arrows show the path followed to determine the predecessor of 14 in the set.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● The operations that took Θ(u) worst-case time with an unadorned bit vector 
now use the tree structure:

- To find the minimum value in the set, start at the root and head down 
toward the leaves, always taking the leftmost node containing a 1.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● The operations that took Θ(u) worst-case time with an unadorned bit vector 
now use the tree structure:

- To find the maximum value in the set, start at the root and head down 
toward the leaves, always taking the rightmost node containing a 1.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● To find the successor of x, start at the leaf indexed by x, and head up toward 
the root until we enter a node from the left and this node has a 1 in its right 
child z.

● Then head down through node z, always taking the leftmost node containing 
a 1 (i.e., find the minimum value in the subtree rooted at the right child z).
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van Emde Boas Trees

Preliminary Approaches – Superimposing a binary tree structure

● Since the height of the tree is lg u and each of the above operations makes at 
most one pass up the tree and at most one pass down, each operation takes 
O(lg u) time in the worst case.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

✔ What happens if we superimpose a tree with greater degree?

✔ Let us assume that the size of the universe is u = 22k for some 
integer k, so that √u is an integer.

✔ Instead of superimposing a binary tree on top of the bit vector, we 
superimpose a tree of degree √u.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● As before, each internal node stores the logical-or of the bits 
within its sub-tree, so that the √u internal nodes at depth 1 
summarize each group of √u values.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● We can think of these nodes as an array summary[0 . . √u - 1], where
summary[i] contains a 1 if and only if the subarray A[i√u .. (i+1) √u – 1]
contains a 1.

● We call this √u-bit subarray of A the ith  cluster.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● For a given value of x, the bit A[x] appears in cluster number 
floor(x/√u).

● Now INSERT becomes an O(1) time operation: to insert x, set both 
A[x] and summary[floor(x/√u)] to 1.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● We can use the summary array to perform each of the operations 
MINIMUM, MAXIMUM, SUCCESSOR, PREDECESSOR, and DELETE 
in O(√u) time.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● To find the minimum (maximum) value, find the leftmost (rightmost) 
entry in summary that contains a 1, say summary[i], and then do a 
linear search within the ith cluster for the leftmost (rightmost) 1.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● To find the successor (predecessor) of x, first search to the right (left) 
within its cluster. If we find a 1, that position gives the result.

● Otherwise, let i = floor(x/√u) and search to the right (left) within the 
summary array from index i. The first position that holds a 1 gives the 
index of a cluster. Search within that cluster for the leftmost (rightmost) 
1. 

● That position holds the successor (predecessor).
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● To delete the value x, let i = floor(x/√u).

● Set A[x] to 0 and then set summary[i] to the logical-or of the bits in the 
ith cluster.
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van Emde Boas Trees

Preliminary Approaches – Superimposing a tree of constant height

● At first glance, it seems as though we have made negative progress.

● Superimposing a binary tree gave us O(lg u) time operations, which 
are asymptotically faster than O(√u) time.

● Using a tree of degree √u will turn out to be a key idea of van Emde 
Boas trees, however. 
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van Emde Boas Trees

Proto van Emde Boas structures

● For the universe {0, 1, 2, . . .  u - 1}, we define a proto van 
Emde Boas structure, or proto-vEB structure, which we denote 
as proto-VEB(u), recursively as follows.

● Each proto-VEB(u) structure contains an attribute u giving its 
universe size.

● In addition, it contains the following:
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van Emde Boas Trees

Proto van Emde Boas structures

● If u = 2, then it is the base size, and it contains an array A[0 .. 1] of 
two bits.

● Otherwise, u = 22^k for some integer k ≥ 1, so that u ≥ 4. In addition to 
the universe size u, the data structure proto-VEB(u) contains the 
following attributes

- a pointer named summary to a proto-VEB(√u) structure 

- and an array cluster[0 . . √u - 1] of √u pointers, each to a proto-
VEB(√u) structure.

2¿
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van Emde Boas Trees

Proto van Emde Boas structures

2¿

● The information in a proto-VEB(u) structure when u ≥ 4. 
● The structure contains the universe size u, a pointer summary to a proto-

VEB(√u) structure, and an array cluster[0 . .  √u – 1) of √u pointers to proto-
VEB(√u) structures.
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van Emde Boas Trees

Proto van Emde Boas structures

2¿

● The element x, where 0 ≤ x < u, is recursively stored in the cluster numbered
high(x) as element low(x) within that cluster.

Where high(x) = floor(x/√u)
low(x) = x mod √u 
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van Emde Boas Trees

Proto van Emde Boas structures

2¿
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van Emde Boas Trees

● The proto-vEB structure of the previous section is close to what 
we need to achieve O(lg lg u) running times.

● It falls short because we have to recurse too many times in 
most of the operations. 



84

van Emde Boas Trees

● Now, we shall design a data structure that is similar to the 
proto-vEB structure but stores a little more information, thereby 
removing the need for some of the recursion.

● We also will allow the universe size u to be any exact power of 
2  and when √u is not an integer that is, if u is an odd power of 
2 (u = 22k + 1 for some integer k ≥ 0), then we will divide the   lg u 
bits of a number into the most significant ceil((lg u )/2) bits and 
the least significant  floor((lg u )/2) bits.
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van Emde Boas Trees

● For convenience, we denote  2ceil((lg u )/2) (the “up- per square 
root” of u) by      .

● And, we denote 2floor((lg u )/2)(the “lower square root” of u) by 

● So that,

● When u is an even power of 2 (u = 22k for some integer k),
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van Emde Boas Trees

● Because we now allow u to be an odd power of 2, we must 
redefine our helpful functions



87

van Emde Boas Trees

vEB tree contains two attributes not found in a proto-vEB structure:

● min stores the minimum element in the vEB tree, and

● max stores the maximum element in the vEB tree.
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van Emde Boas Trees
● Furthermore, the element stored in min does not appear in any of 

the recursive                 trees that the cluster array points to.

● The elements stored in a vEB(u) tree V , therefore, are V.min plus 
all the elements recursively stored in the                   trees pointed 
to by 
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van Emde Boas Trees

● Note that when a vEB tree contains two or more elements, we treat 
min and max differently: the element stored in min does not appear in 
any of the clusters, but the element stored in max does.

● Since the base size is 2, a vEB(2) tree does not need the array A that 
the corresponding proto-vEB(2) structure has.

● Instead, we can determine its elements from its min and max 
attributes.

● In a vEB tree with no elements, regardless of its universe size u, both 
min and max are NIL.



90

van Emde Boas Trees
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van Emde Boas Trees
✔ Figure shows a vEB(16) tree V holding the set {2, 3, 4, 5, 7, 14, 15}.

✔ Because the smallest element is 2, V.min equals 2, and even though 
high(2) = 0, the element 2 does not appear in the vEB(4) tree pointed 
to by V.cluster[0]: notice that V.cluster[0].min equals 3, and so 2 is not 
in this vEB tree.

✔ Similarly, since V.cluster[0].min equals 3, and 2 and 3 are the only 
elements in V.cluster[0], the vEB(2) clusters within V.cluster[0] are 
empty.
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van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the 
number of recursive calls within the operations on vEB trees. 
These attributes will help us in four ways:

1. The MINIMUM and MAXIMUM operations do not even need to 
recurse, for they can just return the values of min or max.
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van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the 
number of recursive calls within the operations on vEB trees. 
These attributes will help us in four ways:

2. The SUCCESSOR operation can avoid making a recursive call 
to determine whether the successor of a value x lies within high(x). 
That is because x’ successor lies within its cluster if and only if x is 
strictly less than the ma attribute of its cluster. A symmetric 
argument holds for PREDECESSOR and min.



94

van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the 
number of recursive calls within the operations on vEB trees. 
These attributes will help us in four ways:

3. We can tell whether a vEB tree has no elements, exactly one 
element, or at least two elements in constant time from its min and 
max values. This ability will help in the INSERT and DELETE 
operations. If min and max are both NIL, then the vEB tree has no 
elements. If min and max are non-NIL but are equal to each other, 
then the vEB tree has exactly one element. Otherwise, both min 
and max are non-NIL but are unequal, and the vEB tree has two or 
more elements.
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van Emde Boas Trees
The min and max attributes will turn out to be key to reducing the 
number of recursive calls within the operations on vEB trees. 
These attributes will help us in four ways:

4. If we know that a vEB tree is empty, we can insert an element 
into it by updating only its min and max attributes. Hence, we can 
insert into an empty vEB tree in constant time. Similarly, if we know 
that a vEB tree has only one element, we can delete that element 
in constant time by updating only min and max. These properties 
will allow us to cut short the chain of recursive calls.
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van Emde Boas Trees
Finding the minimum and maximum elements

• Because we store the minimum and maximum in the attributes min 
and max, two of the operations are one-liners, taking constant time:
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van Emde Boas Trees
Determining whether a value is in the set

● Line 1 checks to see  
whether x equals either 
the minimum or maximum 
element.

● If it does, line 2 returns 
TRUE. Otherwise, line 3 
tests for the base case.

● Since a vEB(2) tree has 
no elements other than 
those in min and max, if it 
is the base case, line 4 
returns FALSE. 

● The other possibility—it is not a base case and x equals neither min nor 
max—is handled by the recursive call in line 5.

● This procedure takes O(lg lg u) time.
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van Emde Boas Trees
Finding the Successor
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van Emde Boas Trees
Finding the Predecessor
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van Emde Boas Trees
Inserting an Element
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van Emde Boas Trees
Deleting an element
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Data Structures for Disjoints Sets

● A disjoint-set data structure maintains a collection S = {S1, S2, …  ,Sk} of 
disjoint dynamic sets.

● We identify each set by a representative, which is some member of the set.

● In some applications, it doesn’t matter which member is used as the 
representative; we care only that if we ask for the representative of a 
dynamic set twice without modifying the set between the requests, we get 
the same answer both times.

● Other applications may require a prespecified rule for choosing the 
representative, such as choosing the smallest member in the set (assuming, 
of course, that the elements can be ordered).
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Data Structures for Disjoints Sets

● We wish to support the following operations:

1) MAKE-SET(x) creates a new set whose only member (and thus 
representative) is x. Since the sets are disjoint, we require that x not already 
be in some other set.

2) UNION(x, y) unites the dynamic sets that contain x and y, say Sx and Sy, 
into a new set that is the union of these two sets. We assume that the two 
sets are disjoint prior to the operation. The representative of the resulting set 
is any member of Sx  S∪ y, although many implementations of UNION 
specifically choose the representative of either Sx or Sy as the new 
representative. Since we require the sets in the collection to be disjoint, 
conceptually we destroy sets Sx and Sy,removing them from the collection S. 
In practice, we often absorb the elements of one of the sets into the other 
set.

3) FIND-SET(x) returns a pointer to the representative of the (unique) set 
containing x.
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Data Structures for Disjoints Sets

● We shall analyze the running times of disjoint-set data structures in terms of 
two parameters: n, the number of MAKE-SET operations, and m, the total 
number of MAKE-SET, UNION, and FIND-SET operations.

● Since the sets are disjoint, each UNION operation reduces the number of 
sets by one.

● After n - 1 UNION operations, therefore, only one set remains.

● The number of UNION operations is thus at most n - 1. 

● Note also that since the MAKE-SET operations are included in the total 
number of operations m, we have m ≥ n.

● We assume that the n MAKE-SET operations are the first n operations 
performed.
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Data Structures for Disjoints Sets

Disjoint-set data structures can be used in determining the connected components of an 
undirected graph
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Data Structures for Disjoints Sets
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Data Structures for Disjoints Sets

Linked-List Representation of Disjoint sets

● A simple way to implement a disjoint-set data structure is 
representing  each set by its own linked list.

● The object for each set has attributes head, pointing to the first object 
in the list, and tail, pointing to the last object.

● Each object in the list contains a set member, a pointer to the next 
object in the list, and a pointer back to the set object.

● Within each linked list, the objects may appear in any order. The 
representative is the set member in the first object in the list.
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Data Structures for Disjoints Sets

● Linked-list representations of two sets. Set S1 contains members d, f , and g, with representative 
f , and set S2 contains members b, c, e, and h, with representative c. 

● Each object in the list contains a set member, a pointer to the next object in the list, and a 
pointer back to the set object. 

● Each set object has pointers head and tail to the first and last objects, respectively.
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Data Structures for Disjoints Sets

● The result of UNION(g, e), which appends the linked list containing e to the linked list 
containing g.

● The representative of the resulting set is f . The set object for e’s list, S2, is destroyed.
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Data Structures for Disjoints Sets

● With this linked-list representation, both MAKE-SET and FIND-SET 
are easy, requiring O(1) time.

● To carry out MAKE-SET(x), we create a new linked list whose only 
object is x. 

● For FIND-SET(x), we just follow the pointer from x back to its set 
object and then return the member in the object that head points to.
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Data Structures for Disjoints Sets

● We perform UNION(x, y) by appending y’s list onto the end of x’s list.

● The representative of x’s list becomes the representative of the resulting set.

● We use the tail pointer for x’s list to quickly find where to append y’s list.

● Because all members of y’s list join x’s list, we can destroy the set object for 
y’s list.

● Unfortunately, we must update the pointer to the set object for each object 
originally on y’s list, which takes time linear in the length of y’s list. 
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Data Structures for Disjoints Sets

● In above figure, for example, the operation UNION(g, e) causes pointers to 
be updated in the objects for b, c, e, and h.
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Data Structures for Disjoints Sets
● In fact, we can easily construct a sequence of m operations on n objects that 

requires Θ(n2) time.

● Suppose that we have objects x1, x2 . . . . xn.

● We execute the sequence of n MAKE-SET operations followed by n - 1 UNION 
operations shown in Figure on next slide, so that m = 2n – 1.

● We spend Θ(n) time performing the n MAKE-SET operations.

● Because the ith UNION operation updates i objects, the total number of 
objects updated by all n - 1 UNION operations is

● The total number of operations is 2n - 1, and so each operation on average 
requires Θ(n) time. That is, the amortized time of an operation is Θ(n).
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Data Structures for Disjoints Sets

A sequence of 2n - 1 operations on n objects that takes Θ(n2) time, or Θ(n) 
time per operation on average, using the linked-list set representation and the 

simple implementation of UNION.
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Review Questions

1) Compare Fibonacci Heaps and Quake Heaps.

2) Explain the concept of van Emde Boas Trees.

3) How can disjoint sets be represented using linked lists? Explain.

4) Explain and analyze MAKE-SET, FIND-SET, and UNION operations 
on disjoint sets using the linked-list representation.
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